Random walk in random environment with asymptotically zero perturbation
نویسنده
چکیده
We give criteria for ergodicity, transience and null-recurrence for the random walk in random environment on Z = {0, 1, 2, . . .}, with reflection at the origin, where the random environment is subject to a vanishing perturbation. Our results complement existing criteria for random walks in random environments and for Markov chains with asymptotically zero drift, and are significantly different from the previously studied cases. Our method is based on a martingale technique—the method of Lyapunov functions.
منابع مشابه
An expansion for self-interacting random walks
We derive a perturbation expansion for general interacting random walks, where steps are made on the basis of the history of the path. Examples of models where this expansion applies are reinforced random walk, excited random walk, the true (weakly) self-avoiding walk and loop-erased random walk. We use the expansion to prove a law of large numbers and central limit theorem for two models: (i) ...
متن کاملLogarithmic speeds for one-dimensional perturbed random walk in random environment
We study the random walk in random environment on Z+ = {0, 1, 2, . . .}, where the environment is subject to a vanishing (random) perturbation. The two particular cases that we consider are: (i) random walk in random environment perturbed from Sinai’s regime; (ii) simple random walk with random perturbation. We give almost sure results on how far the random walker is from the origin, for almost...
متن کاملBallistic Random Walks in Random Environment at Low Disorder
We consider random walks in a random environment of the type p0 + γξz, where p0 denotes the transition probabilities of a stationary random walk on Z, to nearest neighbors, and ξz is an i.i.d. random perturbation. We give an explicit expansion, for small γ, of the asymptotic speed of the random walk under the annealed law, up to order 2. As an application, we construct, in dimension d ≥ 2, a wa...
متن کاملA PRELUDE TO THE THEORY OF RANDOM WALKS IN RANDOM ENVIRONMENTS
A random walk on a lattice is one of the most fundamental models in probability theory. When the random walk is inhomogenous and its inhomogeniety comes from an ergodic stationary process, the walk is called a random walk in a random environment (RWRE). The basic questions such as the law of large numbers (LLN), the central limit theorem (CLT), and the large deviation principle (LDP) are ...
متن کاملUrn-related Random Walk with Drift Ρ X
We study a one-dimensional random walk whose expected drift depends both on time and the position of a particle. We establish a non-trivial phase transition for the recurrence vs. transience of the walk, and show some interesting applications to Friedman’s urn, as well as showing the connection with Lamperti’s walk with asymptotically zero drift.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014